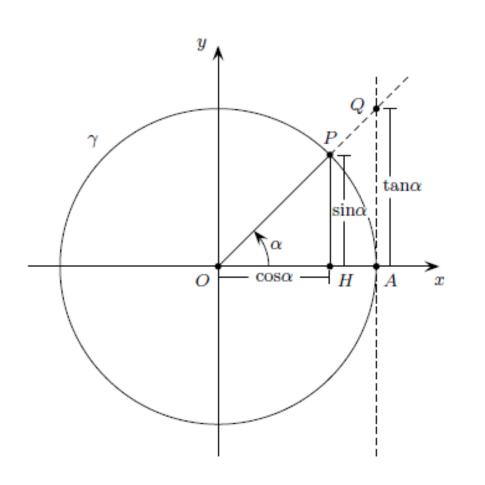
Corso di Laurea in Scienze Naturali Corso di Laurea in Scienze Geologiche

TRIGONOMETRIA

Docente: Marianna Saba

Data: 1-12-2014

Circonferenza goniometrica

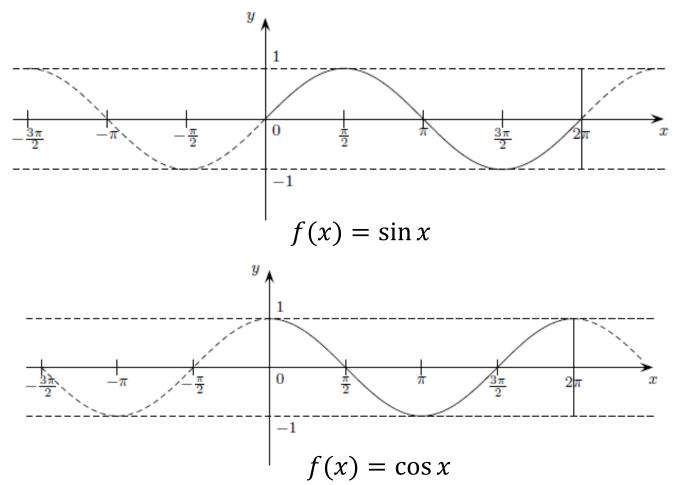


•
$$A=(1,0)$$

•
$$\alpha = \frac{arco AP}{AO}$$
 radianti $\frac{\pi}{2} rad = 90^{\circ}$; $\pi rad = 180^{\circ}$; $\frac{3\pi}{2} rad = 270^{\circ}$; $2\pi rad = 360^{\circ}$

- α positivo quando P si muove in senso antiorario.
- $\forall \alpha \in [0, 2\pi]$ definiamo $\sin \alpha$ = ordinata di P $\cos \alpha$ = ascissa di P

Grafici delle funzioni $\sin x$ e $\cos x$



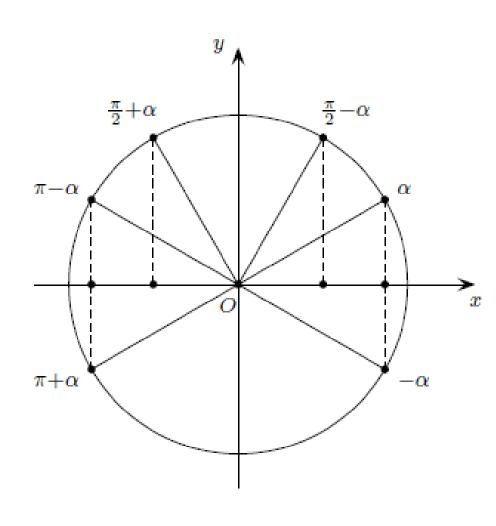
Proprietà della funzione $\sin x$

• Funzione periodica di periodo $T = 2\pi$:

$$\sin x = \sin(x + T)$$
, $\forall x \in R$ in generale:

$$\sin x = \sin(x + kT), k \in Z$$

- $\sin(-x) = -\sin x$ ($\rightarrow \sin x$ è funzione dispari)
- $\sin(x + \pi) = -\sin x$
- $\sin(\pi x) = \sin x$



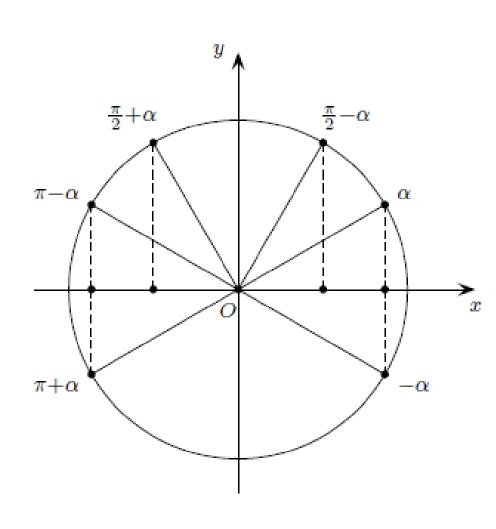
Proprietà della funzione cos x

• Funzione periodica di periodo $T = 2\pi$:

$$\cos x = \cos(x + T)$$
, $\forall x \in R$ in generale:

$$\cos x = \cos(x + kT), k \in Z$$

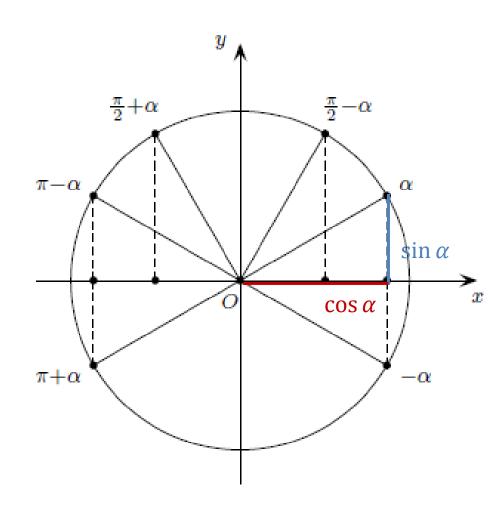
- $\cos x = \cos(-x)$ ($\rightarrow \cos x$ è funzione pari)
- $cos(x + \pi) = -cos x$
- $cos(\pi x) = -cos x$



Ulteriori proprietà

- $\sin\left(x + \frac{\pi}{2}\right) = \cos x$
- $\cos\left(x + \frac{\pi}{2}\right) = -\sin x$
- $\sin\left(\frac{\pi}{2} x\right) = \cos x$
- $\cos\left(\frac{\pi}{2} x\right) = \sin x$

Relazione fondamentale: $\sin^2 x + \cos^2 x = 1$ (dal Teorema di Pitagora)

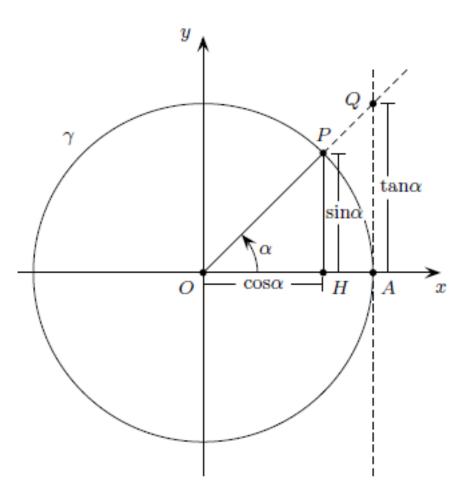


Formule di somma, sottrazione, duplicazione e bisezione per $\sin \alpha$ e $\cos \alpha$

- $cos(\alpha \beta) = cos \alpha cos \beta + sin \alpha sin \beta$
- $cos(\alpha + \beta) = cos \alpha cos \beta sin \alpha sin \beta$
- $sin(\alpha + \beta) = sin \alpha cos \beta + cos \alpha sin \beta$
- $sin(\alpha \beta) = sin \alpha cos \beta cos \alpha sin \beta$
- $\sin 2\alpha = 2 \sin \alpha \cos \alpha$ $\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$

•
$$\sin\frac{\alpha}{2} = \pm\sqrt{\frac{1-\cos\alpha}{2}}$$
 $\cos\frac{\alpha}{2} = \pm\sqrt{\frac{1+\cos\alpha}{2}}$

La funzione tan x



•
$$\tan x = \frac{\sin x}{\cos x}$$

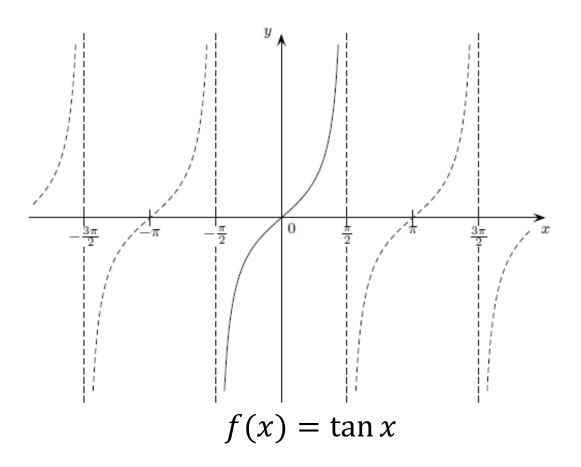
 $\forall x \in R: \cos x \neq 0$, cioè

$$\forall x \in R: x \neq \frac{\pi}{2} + k\pi, \ k \in Z$$

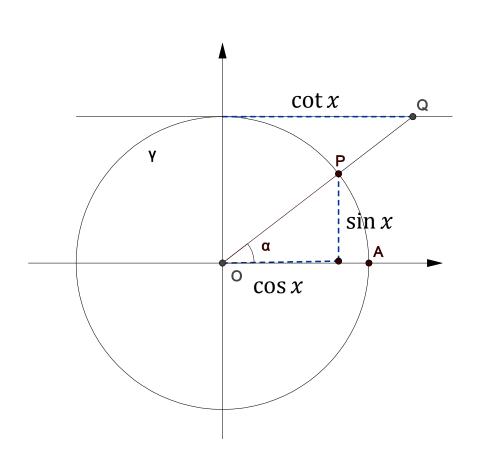
• Funzione periodica di periodo $T=\pi$

$$\tan x = \tan(x + k\pi), k \in Z$$

Grafico della funzione tan x

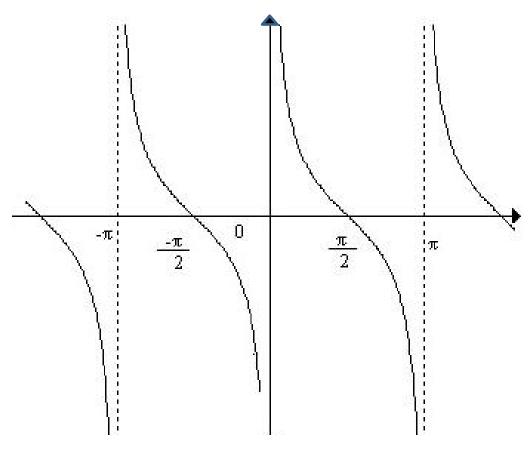


La funzione cot x



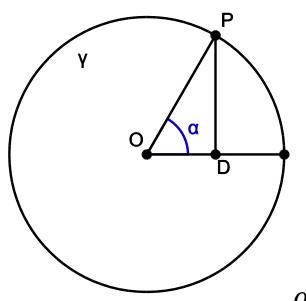
- $\cot x = \frac{\cos x}{\sin x}$ $\forall x \in R: \sin x \neq 0$, cioè $\forall x \in R, x \neq k\pi, k \in Z$
- Funzione periodica di periodo $T=\pi$ $\cot x=\cot(x+k\pi)$, $k\in Z$
- $\cot x = \frac{1}{\tan x}$

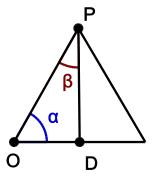
Grafico della funzione cot x



 $f(x) = \cot x$

Dimostrazione: $\sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$





$$\alpha = 60^{\circ} = \frac{\pi}{3}$$
 $\beta = 30^{\circ} = \frac{\pi}{6}$
 $OP = 1$ $OD = \frac{1}{2}$
 $PD = \sin \alpha = \sin \frac{\pi}{3} = \sqrt{1 - \left(\frac{1}{2}\right)^2} = \frac{\sqrt{3}}{2}$

Angoli notevoli

•
$$\alpha = \frac{\pi}{4}$$
:

$$\sin \alpha = \frac{\sqrt{2}}{2}; \cos \alpha = \frac{\sqrt{2}}{2}$$

•
$$\alpha = \frac{\pi}{3}$$
:

$$\sin \alpha = \frac{\sqrt{3}}{2}; \cos \alpha = \frac{1}{2}$$

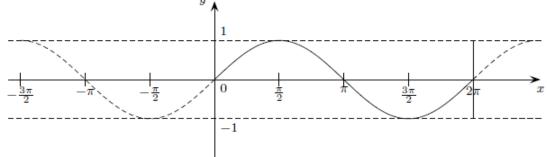
•
$$\alpha = \frac{\pi}{6}$$
:

$$\sin \alpha = \frac{1}{2}; \cos \alpha = \frac{\sqrt{3}}{2}$$

Calcolare $\tan \frac{\pi}{6}$, $\cot \frac{\pi}{3}$, $\tan \frac{\pi}{4}$

Funzioni inverse: $f^{-1}(x) = \arcsin x$

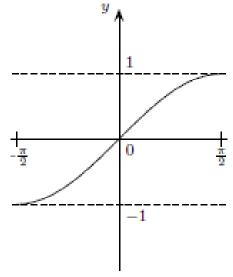
• $f: R \to R$ definita da $f(x) = \sin x$



NON è invertibile

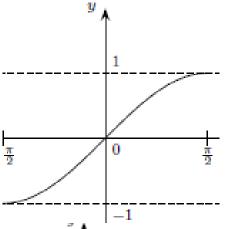
• E' invertibile se definisco

$$f: \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \to [-1, 1]$$
$$f(x) = \sin x$$



La funzione arcsin(x)

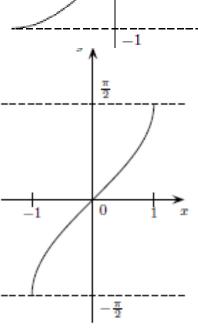
$$f: \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \to [-1, 1]$$
$$f(x) = \sin x$$



• L'inversa è

$$f^{-1}: [-1,1] \to \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$
$$f^{-1}(x) = \arcsin(x)$$

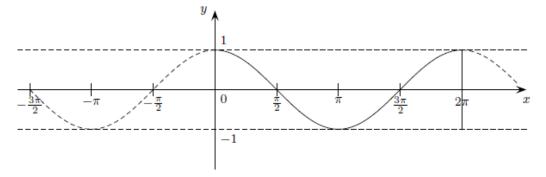
• f^{-1} è dispari



Es: $\arcsin(-1) = -\frac{\pi}{2}$; $\arcsin(0) = 0$; $\arcsin(\frac{1}{2}) = \frac{\pi}{6}$

Funzioni inverse: $f^{-1}(x) = \arccos x$

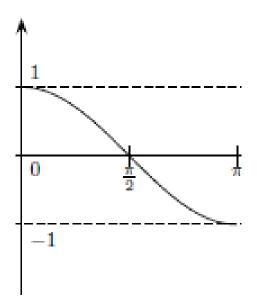
• $f: R \to R$ definita da $f(x) = \cos x$



NON è invertibile

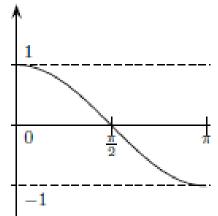
• E' invertibile se definisco

$$f: [0, \pi] \to [-1, 1]$$
$$f(x) = \cos x$$

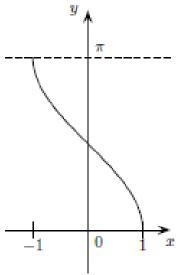


La funzione arccos(x)

$$f: [0, \pi] \to [-1, 1]$$
$$f(x) = \cos x$$



- L'inversa è $f^{-1}: [-1,1] \to [0,\pi]$ $f^{-1}(x) = \arccos(x)$
- f^{-1} è dispari

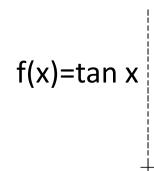


Es:
$$\arccos(-1) = \pi$$
; $\arccos(0) = \frac{\pi}{2}$; $\arccos(\frac{\sqrt{3}}{2}) = \frac{\pi}{6}$

La funzione arctan(x)

•
$$f: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to R$$

 $f(x) = \tan x$

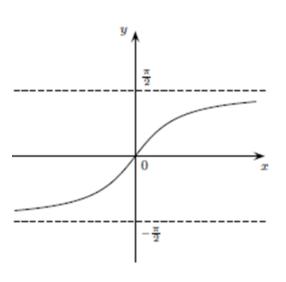


• L'inversa è

$$f^{-1}: R \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

$$f^{-1}(x) = \arctan x$$

• f^{-1} è dispari



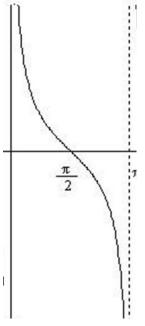
$$\arctan \sqrt{3} = \frac{\pi}{3}$$

$$\arctan(1) = \frac{\pi}{4}$$

La funzione $\operatorname{arccot}(x)$

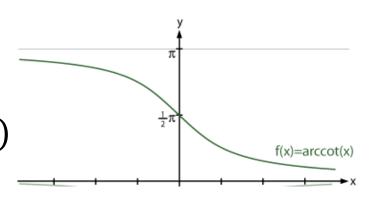
•
$$f:(0,\pi) \to R$$

 $f(x) = \cot x$



• L'inversa è

$$f^{-1}: R \to (0, \pi)$$
$$f^{-1}(x) = \operatorname{arcco} t(x)$$



Es: $\operatorname{arccot} 1 = \frac{\pi}{4}$

- $\sin x = -2$ x=? $\nexists x \in R$
- $\sin x = \frac{1}{2}$ x=? $x = \pi - \frac{\pi}{6} + 2k\pi$ $x = \frac{\pi}{6} + 2k\pi$ $(k \in Z)$
- $\sin 2x = \frac{\sqrt{2}}{2}$ x=? $2x = \frac{\pi}{4} + 2k\pi$ $2x = \pi \frac{\pi}{4} + 2k\pi$ quindi x=.....

• $\sin 5x = \sin 3x$ $5x=3x+2k\pi$ $5x = \pi - 3x + 2k\pi$ quindi $x=k\pi$ e $x=\frac{\pi}{\Omega}+\frac{k\pi}{\Delta}$ • $\sin^2 x + \sin x - 2 = 0$ Posto $\sin x = t$, si ha $t^2 + t - 2 = 0$ con soluzioni t = -2, t = 1 cioè $\sin x = -2 e \sin x = 1$, ovvero $x=\frac{\pi}{2}+2k\pi$.

•
$$\cos x = \frac{\sqrt{3}}{2}$$
 $x=?$

$$x = \frac{\pi}{6} + 2k\pi$$
 $x = -\frac{\pi}{6} + 2k\pi$ $(k \in Z)$
• $\cos 7x - \cos \frac{x}{6}$ $x=?$

•
$$\cos 7x = \cos \frac{x}{3}$$
 x=?
 $7x = \frac{x}{3} + 2k\pi$ $7x = -\frac{x}{3} + 2k\pi$

•
$$\sqrt{2} \sin x \cos x + \cos x = 0$$

 $\cos x (\sqrt{2} \sin x + 1) = 0$
 $x = \frac{\pi}{2} + k\pi$ $x = \frac{5\pi}{4} + 2k\pi$ $x = \frac{7\pi}{4} + 2k\pi$

• $\tan 4x = -1$

$$4x = \frac{3}{4}\pi + k\pi \to x = \frac{3}{16}\pi + k\frac{\pi}{4}$$

• $\sin^2 x - 3\cos^2 x = 0$

Usando la Formula fondamentale della trigonometria si ha

$$1 - \cos^2 x \, - 3\cos^2 x = 0$$

$$x = \pm \frac{\pi}{3} + k\pi$$

Disequazioni

• $\sin x > -\frac{1}{2}$

Si risolve prima
$$\sin x = -\frac{1}{2}$$

$$x = \frac{7\pi}{6} + 2k\pi \qquad x = -\frac{\pi}{6} + 2k\pi$$

• Soluzione:

$$-\frac{\pi}{6} + 2k\pi < x < \frac{7\pi}{6} + 2k\pi$$

Disequazioni

$$-\cos x - \frac{\sqrt{2}}{2} \ge 0$$

Si risolve prima
$$\cos x + \frac{\sqrt{2}}{2} = 0$$

$$x = \frac{3\pi}{4} + 2k\pi \qquad x = \frac{5\pi}{4} + 2k\pi$$

Soluzione:

$$\frac{3\pi}{4} + 2k\pi \le x \le \frac{5\pi}{4} + 2k\pi$$

Disequazioni

• $\sqrt{3}\sin x - \cos x > 0$

Dividiamo per $\cos x \neq 0$, $\left(x \neq \frac{\pi}{2} + k\pi\right)$ e distinguiamo:

1. $\cos x > 0$

$$1. \begin{cases} \frac{\sqrt{3} \sin x - \cos x}{\cos x} > 0 \\ \cos x > 0 \end{cases}$$

2. $\cos x < 0$

$$2. \begin{cases} \frac{\sqrt{3}\sin x - \cos x}{\cos x} < 0 \\ \cos x < 0 \end{cases}$$

cioè

$$1. \begin{cases} \sqrt{3} \tan x - 1 > 0 \\ \cos x > 0 \end{cases}$$

$$2. \begin{cases} \sqrt{3} \tan x - 1 < 0 \\ \cos x < 0 \end{cases}$$

Soluzione del primo sistema

$$\frac{\pi}{6} + 2k\pi < x < \frac{\pi}{2} + 2k\pi$$

2. Soluzione del secondo sistema

$$\frac{\pi}{2} + 2k\pi < x < \frac{7\pi}{6} + 2k\pi$$

• Poiché anche $x = \frac{\pi}{2} + 2k\pi$ è soluzione, facendo l'unione si ha:

$$\frac{\pi}{6} + 2k\pi < x < \frac{7\pi}{6} + 2k\pi$$