Critical points for distance functions on surfaces

Costin Vîlcu
Institute of Mathematics Simion Stoilow of the Romanian Academy

The talk is based on joint work with I. Bárány, J. Itoh, and T. Zamfirescu.
Let S be a compact Riemannian surface without boundary. Denote by ρ the intrinsic metric on S, and by ρ_{x} the distance function from x, given by $\rho_{x}(y)=$ $\rho(x, y)$. A point $y \in S$ is called critical with respect to ρ_{x} (or to x), if for any direction v of S at y there exists a segment (i.e., shortest path) from y to x whose direction at y makes an angle $\alpha \leq \pi / 2$ with v.

We show that every point on S is critical with respect to some other point of the surface, and this lower bound is sharp. Moreover, S is homeomorphic to the sphere S^{2} if and only if each point in S is critical with respect to precisely one other point of S.

Assume now that S is orientable. For a generic Riemannian metric on S, the point y is critical with respect to an odd number of points in S. For any Riemannian metric on S, y is critical with respect to at most $8 g-5$ points in S, where g is the genus of S.

